If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+60x-800=0
a = 3; b = 60; c = -800;
Δ = b2-4ac
Δ = 602-4·3·(-800)
Δ = 13200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13200}=\sqrt{400*33}=\sqrt{400}*\sqrt{33}=20\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-20\sqrt{33}}{2*3}=\frac{-60-20\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+20\sqrt{33}}{2*3}=\frac{-60+20\sqrt{33}}{6} $
| 3/4(x+12)=27 | | 5x-13=8x+20 | | 3/4+3x=3=5x | | -154=-2-4(8x+6) | | -3z+8+9-2z)=-12 | | 1/3y+11=8 | | −3t+8=20 | | 9=6×x/7 | | 8-3k=11 | | 9r+16=π/5 | | 7x=3x-4x^2 | | 8(2n+6)=8(n+7) | | 7x+52=115 | | 12+17j=-5 | | -7x-23=2x+9 | | 7(3n+5)=7(6n+6)+1 | | 13x-53=6x+9 | | 4+5n=17 | | 13=−7+9x−5x | | 3(4x-1)-3x=5-(x+2) | | 13x-53=6x-9 | | 4(12x−3)=−204. | | (D^2-4D+4)=2^x | | 13x-53=13x+24 | | -8(v+6)=6(6v-8) | | 3(m+3)=18,m= | | -0.4=g | | 8a-14=27 | | 3x^2+30x-800=0 | | 6j=15= | | 9.5p+4=4(p–1)+7 | | 13x-53=-13x+53 |